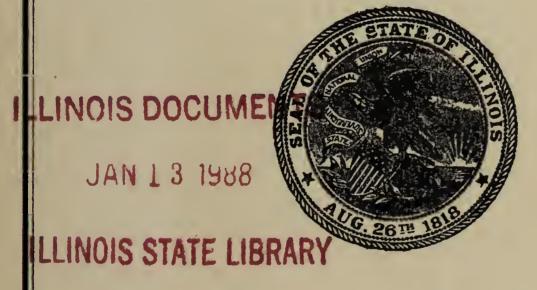
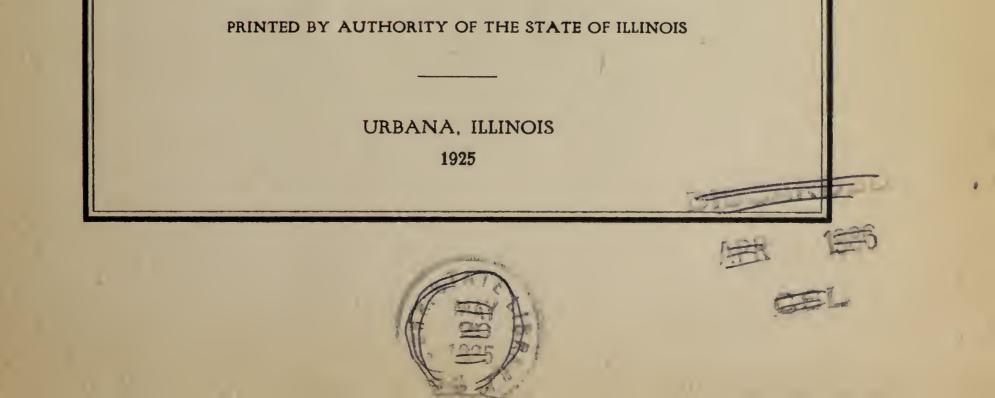
5045054

I557.73 Gr-2 c.3

> STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION A. M. SHELTON, Director


> > DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief


REPORT OF INVESTIGATIONS NO. 2

STRUCTURE OF PARTS OF NORTHEASTERN WILLIAMSON AND WESTERN SALINE COUNTIES

> BY GILBERT H. CADY

IN COOPERATION WITH U.S. GEOLOGICAL SURVEY

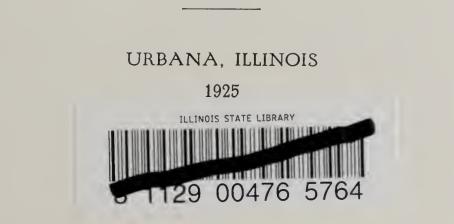
	DATE	DUE	
JUL 2	5 1995 I_	CS	
GAYLORD			PRINTED IN U.S.A.

STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION A.⁻M. SHELTON, *Director*

> DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, *Chief*

REPORT OF INVESTIGATIONS NO. 2

STRUCTURE OF PARTS OF NORTHEASTERN WILLIAMSON AND WESTERN SALINE COUNTIES


BY GILBERT H. CADY

IN COOPERATION WITH U.S. GEOLOGICAL SURVEY

DINITED DV ALITICDITY OF THE OTATE OF HIMMON

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

JEFFERSONS PRINTING CO. SPRINGFIELD, ILLINOIS

1925 25215—2000

•

.....

STRUCTURE OF PARTS OF NORTHEASTERN WILLIAMSON AND WESTERN SALINE COUNTIES

By Gilbert H. Cady

OUTLINE

Page

5

Introduction 5 Importance of the area..... 5 General statement of results of investigation..... 6 Regional geology 6 Stratigraphic succession 6 Structure 7 Geology of the local area..... 7 Surficial geology 7 Bed rock 8 Structure 9 Description of the structural map..... 9 Method of showing the altitude of No. 6 coal.... 11 Principal structural features 11 Method of showing variation in the thickness of coal..... 11

Plate	
-------	--

1467,73

ILLUSTRATIONS

- Structural map of parts of northeastern Williamson and western I. Saline counties, showing contours on No. 5 coal and the interval between No. 5 and No. 6 coals..... In pocket
- A. Graphic section of strata encountered in a number of diamond II. drill borings in the area. B. Index map upon which the thicknesses of and interval between Nos. 5 and 6 coals are indicatedIn pocket
- III. Property map of the area showing the location of the drill holes with reference to ownership of land at the time of drilling. In pocket

Figure

- Index map showing location of area covered by report..... 1.
- Photograph of specimens of Gertyina ventricosa..... 2. 9

TABLE

Tabulated data on the No. 5 and No. 6 coals..... 1. 13 Digitized by the Internet Archive in 2018 with funding from University of Illinois Urbana-Champaign

https://archive.org/details/structureofparts00cady

INTRODUCTION

The purpose of this report is to discuss the special structural features which materially affect the value of the coal deposits in portions of northeastern Williamson and western Saline counties. The location of this area is shown in figure 1. This report is not designed to present the details of the stratigraphy of the area nor to describe the mineral resources. A forthcoming report to be published as a folio of the Geological Atlas of the U. S. Geological Survey involving a larger area, the Galatia and West Frankfort quadrangles, will contain descriptive data in regard to the geological succession and the mineral resources. The coal beds and associated rocks have already been described in bulletins of the Illinois Coal Mining Investigations.^{1, 2}

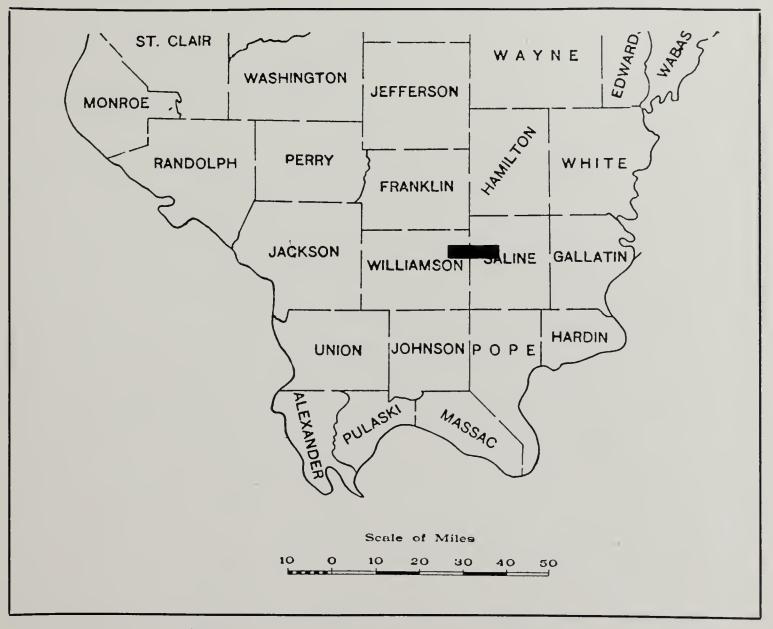


Fig. 1. Index map of southern Illinois showing location of area covered by the report.

IMPORTANCE OF THE AREA

The area herein reported upon is about midway between the main Williamson County mining district lying between Herrin and Marion, and the Harrisburg district of Saline County. Development is encroaching

¹ Cady, G. H., Coal resources of District VI: Ill. Mining Investigations Bull. 15, 1916. ² Cady, G. H., Coal resources of District V: Ill. Mining Investigations Bull. 19, 1919.

upon the area and already three mining operations are located within its boundaries. Further interest attaches to the area in that the line of the Illinois Central cut-off through southern Illinois is reported to be projected across it. Two beds of workable coal are known to underlie the area; one other workable bed is probably present and possibly a fourth. On the conservative assumption of an average thickness of five feet for both No. 5 and No. 6 coals, the total amount of coal in the beds within this area amounts to about 675,000,000 tons. It is not improbable that there is at least one-third as much more coal present in lower beds, particularly in the No. 2 bed.

GENERAL STATEMENT OF RESULTS OF THE INVESTIGATION

1. The formations of the area are variously inclined and flexed, resulting in a considerable variation of level at which the coal beds may be encountered in drilling or sinking shafts.

2. Remarkable displacements or faults occur along certain lines or zones which produce offsets that must be taken into account in correlating the coal beds and in plans for the recovery of the coal.

3. The interval between Nos. 5 and 6 coals increases eastward from 80 feet in the western part to 130 feet in about the middle part of the east half, east of which the interval slightly decreases.

4. Variations in the thickness of No. 5 coal correspond with the variations in the interval between No. 5 and No. 6 coal. That is, No. 5 coal thickens eastward to about the middle of the east half of the area, east of which it is somewhat thinner. There is no regularity in the variations of No. 6 coal.

REGIONAL GEOLOGY

STRATIGRAPHIC SUCCESSION

The region lies a few miles north of the southern border of the Illinois coal basin. Southward toward this border, because of the general northward dip of the strata, successively older and older series of rocks or formations belonging to the Pennsylvanian system or "Coal Measures" outcrop in belts running parallel to the edge of the basin. The upper and hence innermost formation of the Pennsylvanian system is the McLeansboro formation, which includes all Pennsylvanian strata above the top of No. 6 or Herrin (Blue-band) coal. Underlying the Mc-Leansboro formation and forming an intermediate belt of outcropping rocks is the Carbondale formation which includes all strata from the top of No. 6 coal to the base of No. 2 or Murphysboro coal. Within this formation is also No. 5 or Harrisburg coal. The lowermost portion of the

Pennsylvanian outcrops at the border of the coal basin and includes all Pennsylvanian strata below No. 2 coal. These strata constitute the Pottsville formation. The resistance to erosion of several Pottsville sandstone beds outcropping in southern Illinois is largely responsible for the relief of the belt of elevated country known as "The Mountains" which lies within view a few miles to the south.

STRUCTURE

These strata are all characterized by the gentle northward dip toward the center of the Illinois Coal Basin which lies fifty miles or more to the north. Here and there, however, are found local interruptions of this northward dip where the strata lie horizontally or are locally inclined more steeply in other directions than to the north, or where they have been broken by faults. Of these irregularities in the lay of the rocks in the coal basin of southern Illinois, the most important is without doubt the structure known as the Duquoin anticline which separates a relatively shallow portion from a relatively deep portion of the basin along a line running north from a point between Carbondale and Duquoin to a point north of Centralia. Across the deeper portion of the basin which lies to the east of the Duquoin anticline there are at least two important zones of structural irregularity, in each of which faulting is a conspicuous element. One zone extends northward between Marion and Herrin and is encountered in mining operations northwest of Marion, west of Johnston City, at Orient and elsewhere. The other zone begins on the east near Equality, Gallatin County. It passes about two miles north of Harrisburg, and continues slightly north of westward crossing the area described in this report. Thence it passes about two miles north of Johnston City and possibly terminates along the Williamson and Franklin county line between Bush and Royalton. It is with the effect of earth movements along this latter fault zone within the local area described in this report that we are chiefly concerned.

GEOLOGY OF THE LOCAL AREA

SURFICIAL GEOLOGY

The local area is a region of moderate relief and the hills composed of sandstone are dissected by streams commonly with flat-floored valleys

such as characterize parts of the glaciated interior lowlands of southern Illinois. A thin covering of glacial drift lies on most of the hills, but is not universally distributed. Above the drift or upon the rock surface where the drift is absent there is almost everywhere a thin coating of yellow silt or loess commonly two to three feet in thickness and probably of aeolian origin. This material is more widely distributed than the 8

drift, being found at practically all levels, either as original deposit or as wash, therefore generally obscuring rock outcrops. Here and there thicker deposits of glacial drift fill depressions in the rock surface which probably were portions of the preglacial valley system that have not yet been cleaned out by the present streams.

BED ROCK

Outcrops of bed rock are found for the most part along channels of streams and in road cuts. Here and there on hillsides an especially hard ledge of rock will protrude through the thin covering of silt, loess, or till, but the continuous tracing of any formation for more than a short distance, say a quarter of a mile, is impracticable. The similarity of the rocks in different stratigraphic horizons, together with the discontinuity of outcrop and irregularity in the structure, makes definite correlation of outcropping strata generally impossible. Invaluable for purposes of correlation of outcropping strata and interpretation of the structure are the records of scores of drill holes scattered over the area.

The Pennsylvanian rocks outcropping in this area are probably all of McLeansboro age, that is, they belong to that part of the Pennsylvanian section above No. 6 coal. In one locality and possibly in two. both in the S. $\frac{1}{2}$ sec. 35, T. 8 S., R. 4 E., there may be exposed a few feet of Carbondale strata, including part of No. 6 coal, its underclay, and a few feet of underlying rock.

No attempt is made to show on Plate I the area underlain by the various outcropping members of the McLeansboro formation, because of the uncertainty that attaches to the correlations. It, however, shows the general distribution of outcropping rocks in the valleys and on the flanks of some of the hills. The various formations are designated on the map by appropriate patterns, and where the limestone is known to contain a fusulinoid shell, the limestone pattern is accompanied by the letter "F." Such limestones may not everywhere be the same, but it seems probable that they occur in the lower 100 feet of the McLeansboro formation. The form which is rather abundant and the most prevalent in the limestones of the lower part of the McLeansboro near No. 6 coal is commonly about 1/10 of an inch in diameter and $\frac{1}{4}$ of an inch long, tapering to a point at both ends, the whole fossil having a shape resembling a very thick and short grain of wheat (fig. 2-A). It is known as Gertyina ventricosa (Meek). As commonly seen in cross section (fig. 2-B) it shows a concentric cellular structure. Its stratigraphic range has not been fully determined.

The section of the McLeansboro formation present and presumably outcropping in the area is indicated in the graphic sections reproduced from several coal test diamond drill borings in the area (Plate II). Outcropping strata probably include no beds below No. 6 coal.

Underlying the exposed rocks are the lower portions of the Pennsylvanian section, the Carbondale and Pottsville formations, to a known thickness in one locality (sec. 8, T. 9 S., R. 5 E.) of about 1340 feet. The Carbondale formation has a relatively small variation in thickness in southern Illinois, but the extent to which the thickness of the Pottsville

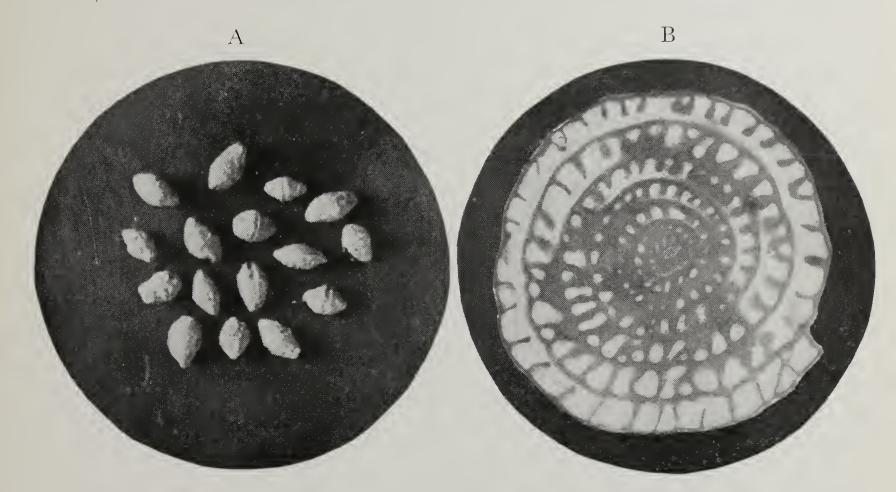


Fig. 2. Photograph of specimens of Gertyina ventricosa.

- A Enlarged approximately twice.
- Cross section enlarged approximately 32 times. Б.

formation may vary is unknown since only a very few drill holes have penetrated the formation.

Beneath the Pennsylvanian strata are the formations belonging to the Chester series of the Mississippian system, attaining a known thickness of about 900 feet. Rocks of still deeper formations have not been penetrated within the area except for about 100 feet, so that the thickness of the sedimentary strata above granite or crystalline rock is unknown but probably amounts to many hundred feet.

STRUCTURE

DESCRIPTION OF THE STRUCTURAL MAP

In order to clearly present the information which is of utmost value to exploratory work a structure contour map has been made. Attention

is directed to the method of portraying these structural features on the structural map, Plate I.

Plate I shows the position and dip and strike of observed faults and rock outcrops, and the location of drill holes and mine shafts. The surface elevation of each boring and shaft, the depth and altitude of the bottom of No. 5 and No. 6 coals, and the thickness of each bed where this information can be given without violating confidential data, are given in Table I, page 13.

Plate III is essentially a copy of part of a familiar field map prepared by the Guarantee Trust Company showing the location and number of holes drilled by several companies in western Saline and eastern Williamson counties before 1910. The original map showed depth and thickness of the coal, but this information is omitted as unnecessary for purposes of identification of the holes. In addition to data on the original map, Plate III shows by circles the location of holes drilled since 1910, and the company number of each hole. For some of the borings, corrected locations were obtained in the field. Such necessary changes are indicated by arrows pointing to the symbols representing revised locations.

Identification on Plate I of holes shown on Plate III is readily made by reference to Table I where the original company number of each hole is given in column 4 listed by township and section. Then by reference to column 5, the map number can be found, by which the hole can be located on Plate I, if direct identification from map to map is uncertain.

The structure of the area is delineated by red contour lines which refer to the altitude of the base of No. 5 coal, relative to sea-level datum. The upper surface of a coal bed is more commonly used as a datum in structure maps appearing in publications of the Illinois State Geological Survey, but in this special report it seems advisable to conform to local engineering practice and use the base of the coal bed as datum.

Reference to Plate I reveals the undulatory structure of the No. 5 coal; it reaches an altitude of 350 feet above sea level in the NE. $\frac{1}{4}$ of sec. 1, T. 9 S., R. 4 E. and an altitude of 25 feet below sea level in the S. $\frac{1}{2}$ sec. 24, T. 8 S., R. 5 E. In areas of outcrop, the map shows the direction of dip by small blue arrows accompanied by figures denoting the amount of dip.

10

In addition to being tilted, the strata are in places displaced or faulted. Such faults are designated by heavy continuous or interrupted blue lines. Where the blue lines are unbroken, there is no doubt as to the existence and position of the fault. Fault structures are exposed where fault lines are shown crossing an area of outcropping rock. Elsewhere the fault lines are projected in the general direction of the trend of the outcrops of the faults or are indicated where they seem to be the proper explanation for differences in the elevation of the coal as determined by drilling.

METHOD OF SHOWING THE ALTITUDE OF NO. 6 COAL

Since exploitation of the coal on the west side of the area is in No. 6 (Herrin or Blue-band) coal, it is important to show the altitude of that coal with reference to the altitude of No. 5. This is done by the use of broken red lines, commonly called convergent contours, which indicate the vertical interval between the two coal beds, as shown on Plate I. The altitude of No. 6 coal at any place may then be obtained by adding the amount of the interval between the two coals as indicated by the convergent contours. Inspection of the map shows that there is a gradual increase eastward in this interval to about the middle of the east half of the area beyond which there is a slight decrease in the interval.

PRINCIPAL STRUCTURAL FEATURES

The main features of interest in the structure are: (1) the Corinth fault which runs N. about 60 degrees E. from the Williamson-Saline county line; (2) the Brushy anticline in secs. 4, 5, 8 and 9, Brushy Township (T. 9 S., R. 5 E.); (3) the trough running parallel with and south of the Corinth fault and Brushy anticline; (4) Brushy Creek fault running about N. 25 degrees E. about $\frac{1}{2}$ mile west of Bankston Fork Church (sec. 10, T. 9 S., R. 5 E.); (5) Bankston Fork fault crossing the NW. 1/4 sec. 12, Brushy Township. This last named structure is possibly a continuation of the Harrisburg fault which crosses secs. 2 and 3, and possibly secs. 4 and 5, Harrisburg Township (T. 9 S., R. 6 E.). For all these structures, except the last one mentioned, surface evidence is known. Faulting across Bankston Fork in sec. 12, Brushy Township, is thought to be the most probable explanation of the differences in the altitude of the coal as shown on the map in secs. 1 and 12, Brushy Town. ship, and secs. 6 and 7, Harrisburg Township, as revealed by drilling. This interpretation of the structure was reached after a study of the drill records in the office at the close of the season's field work. No outcrops were observed which threw light on this interpretation.

METHOD OF SHOWING VARIATION IN THICKNESS OF COAL

Inasmuch as Table I includes figures showing the thickness of the coals, relationships of additional interest but not of a structural character may readily be indicated. Thus, by drawing lines separating areas in

which the coals are of different thickness, the variations in the thickness of the coals can be indicated (Plate II-B).

Inspection shows that there is apparently no regularity in the variations in the thickness of No. 6 coal, whereas the variations in the thickness of No. 5 coal are regular, the coal increasing in thickness from west to east to about the middle of the east half of the area, east of which there is a slight decrease in thickness. It will doubtless be noted that the variations in the thickness of No. 5 coal and the variations in the interval between No. 5 and No. 6 coals as previously noted have a similar geographic distribution, a similarity which holds not only in this area but which has been worked out for a much larger area in the Franklin and Williamson county fields.³

³ Cady, G. H., Coal Resources of District VI: Illinois Mining Investigations Bull. 15, pp. 26-36, 1916.

								•				
	Com	Company					No. 6 Coal	al		No. 5 Coal ^e	olu	
	Namea	No.	Map No.	Surface altitude	Elev. ^b method	Depth to bottom	Altitude of bottom	Thickness	Depth to bottom	Altitude of bottom	Thickness	Remarks
TTY E.				Feet		Feet	Feet	Ft. In.	Feet	Feet	Ft. In.	
	Ü	151	Ţ	408		327	81		420	-12	4 6	
$\mathbf{\lambda}$	ن ت	140	c7 o	422		309 309	113	5 n 0 8	401	21	4 6	-
h	5 5	171	0 4	435		296 296	90 139		$^{\pm 01}_{393}$	42 o	4 4	
\mathbf{V}	IJ	126	1	405		344	61	Ţ	441	36		
-7	IJ	121	57	400		331	69		434	34	5 2	
~	IJ	113	က	399		318	81	6 10	421	-13	4 10	
1	IJ	117	4 +	409 410	B. D.	310	66	5 11	414	- 2	4 4	Oil test
1	Ċ	104	5	412		255	156	5 9	out	out	out	
	IJ	78	ಂ	380		280	100	5 S	398	-18	6 2	
	U	95	1	431		296	135	5 4	422	11	7 1	
-	U	82	7	428		269	159	5 4	out	no	out	Churn drill
1	Ü	26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	438		307	131	ы 1	428	10	6 4	Churn drill
+	H	B-1	4	433.4		286d	147d		408d	27d		
7	Ċ	85	rð L	445		310	135	6 6	431	1+		
2	Ü	73	1	435		291	++1	Ŧ <u></u>	101	34	4 7	
-7	U	96	C1	440		309	131		+11	29		
	5	8:3	~	427	B. D.	301	126	2	428	-	6 S	

TABLE 1-Location and level data for borings located on Plate I.

STRUCTURE OF PARTS OF WILLIAMSON AND SALINE COUNTIES

120.			Ĕ																				21.
		Elev. ^b method			Н. L.			Н. L. Н Г.	B. D.			O. E.			H. I.	B. D.	B. D.	H. L.	H. L.	H. I.	B. D.	B. D.	table, page
		Surface altitude		Feet	408	422	404	435 405	400	399	409	410	412	380	431	428	438	433.4	445	43.5	440	427	Explanatory footnotes are given at the end of the table, page
		Map No.			Ţ	5	ಣ	4 -	- 21	က	4	1	5	00	1	2	က	4	rů.	Ţ	C 1	~~~~	ven at the
	Company		N0.		151	169	140	171 126	121	113	117	•	104	78	95	82	16	B-1	85	7:3	96	8:3	tes are give
	Com		Namea		C	IJ	U i	5 5	U U	IJ	IJ	•	G	Ü	U	U	U	H	Ľ	Ċ	IJ	C	ry footno
	n	of sec.	1/4	SALINE COUNTY T. 8 S., R. 5 E.	NE	MN	SE	MN WW	NE	MN	SW	MN	MN	SE	NE	NE	SW	MS	MS	MN	NE	NE	Sxplanato
	Location	Part of	74	LINE CO T. 8 S., R.	SE	· SE	NE	SE	Cen.	SE	Cen.	MN	MN	NE	MN	SE	NE	NE	Cen.	MN	NS.	SE	e, d, e,
				LIAS	19	19	19	19 20	20	20	20	25	25	25	26	26	26	26	50 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	27	17	27	a, b,

	Con	Company					No. 6 Coal	al			No. 5 Coal ^e	u] c	
~~ 6c.	Namea	a No.	Map No.	Surface altitude	Elev. ^b method	Depth to bottom	Altitude of bottom	Thickness	1	Depth to bottom	Altitude of bottom	Thickness	Remarks
	Ha G	HC-1 81	4	<i>Feet</i> 424 434	P. E. H. L.	Feet 297d 295	<i>Feet</i> 127d 139	Ft. 1) 5 1	<i>In.</i> 10	<i>Feet</i> 414d 416	<i>Feet</i> 10d 18	$\begin{array}{ccc} Pt. & In. \\ \vdots & \vdots & \vdots \\ 6 & 0 \end{array}$	
	C	22	అ	430	Н. І.	270	160			390	40		Hole may be located in SELC SWL
	Ha Ha Ha	HC-5 Shaft HC-4	⊳ ∞ 6	432.6 423.4 411.8		271d 	162d	•••	: 0	399d 416 370d	34d 8 42d	0	sec. 27.
	U	86	-	435	Н. Г.	298	137	τ Ω		406	20	4 3	Possibly lo- cated in SE ½ NE½ sec 20
	υυ	80 87 110, 3	N N 7	420 442 413 1		317 293 9693	103 149	5. 5.	$2\frac{2}{2}$	421 408	34	57.44 23.03	
L.		102 65 74 73 66 66	4 – 0 o 4 ro	412.1 418 432 433 465 465	Р. Б. Н. Г. В. D. В. D.	283a 282 301 299 302 264	1294 136 131 163 191	ي ي ي ي ي ي بر ي ي ي ي ي		N.D.E. 1407 1407 1406 106 N.D.E.	$\begin{array}{c} 18 \\ N.D.E. \\ 25 \\ 27 \\ 59 \\ N.D.E. \end{array}$	N.D.E. A.D.E. A = 3 A = 4 A = 5 N.D.E.	
	U	84		466		291	175			394	72	4 7	

TABLE 1-Location and level data for borings located on Plate 1-Continued.

14

STRUCTURE OF PARTS OF WILLIAMSON AND SALINE COUNTIES

ion	of se	I,	SE SW SE	SW SW NW	SW SW SW SW SW SW SK
Locat	Part	1/4	NW NE SE	SE SE SW SW	NE SE NW NW NW SW NW NW
			27 27 27	27 27 28	30 30 30 30 30 30 30 30 30 30 30 30 30 3

															No record				Churn drill		Hole not	found.						
4 0	4 7	•				N.D.E.	4 0	N.D.E.	5 0	5 0		5 0		2 33	6 2		•		5 9	6 5	6 8		N.D.E.		N.D.E.	00 00	3 0	out
82	93	108d	104d	108d		N.D.E.	92	N.D.E.	100	202	112d	32	17d	99	95	26d	36d	41d	61	26	64	AT D TK	$N \cdot D \cdot E$.		 N.D.E.	153	179	out
414	340	326d	345d	330d		N.D.E.	334	N.D.E.	308	198	315d	388	386d	324	322	370d	365d	370d	359	397	319	AT D	$N \cdot D \cdot E$		N.D.E.	244	195	out
$11\frac{1}{2}$	5	•	•	•		0	∞	0	ĩ	9	•	4	•	2	•	:	•	•	4	0	Ţ	L.	O.		0	0	0	6
∞	r0	•	•	:		9	r0	9	9	5	•	ŋ	•	9	•	•	•	•	ų	5	9	c	0		ŋ	9	<u></u>	4
171	187	213d	204d	207d		162	193	268	209	304	224d	134	153d	176		158d	161d	168d	164	159	190	CL F	7/1	 	 213	248	289	289
325	246	221d	245d	231d		294	233	169	199	96	203d	286	250d	214	- - - - - - - - - - -	238d	240d	243d	256	264	193	000	200		164	149	86	85
	P. E.								P. E.		Р.				Р.	Ρ.	Р.	Р.			Р.		п. Г.		H. L.	<u>^</u>	H. L.	H. L.
496	433	434	449	438		456	426	437	408	400	427.6	420	403?	390	416.9	396.2	400.6	411.1	420	423	382.6	067	438		377	397	375	374
2	Ţ	2	က	4		1	2	က	Ţ	5	ŝ	H	0	ŝ	4	5 D	9	2	-	2	\$	-				2	က	4
	92					63	59	47	. 64		Η											c I	0,		35	۰.	46	9
G	IJ	SG	SG	$s_{\rm C}$	(Shaft)	IJ	IJ	IJ	IJ	IJ	Ha	5	Η	IJ	IJ	Η	Η	Η	G	IJ	IJ	ζ	5	 1	IJ	5	IJ	IJ

atory footnotes are given at the end of the table, page 20.

* (t)

SW NW NE NE NE	Cor. Cor. SEE SW SEE SW	5 E.	Cor. NE NE SW SW
NW NE SE NW NW	NW SEE SEE SW NW SW NW	9 S., R	NW NE SW SE
30 31 31 31 31 31 31 31 31 31 31 31 31 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E .	a, 1

	Company	any					No. 6 Coal	al			No. 5 Coal ^c	al c	
6.	Namea	No.	Map No.	Surface altitude	Elev. ^b method	Depth to bottom	Altitude of bottom	Thickness	Aness	Depth to bottom	Altitude of bottom	Thickness	Remarks
				Feet		Feet	Feet	Ft.	In.	Feet	Feet		
- 7	IJ	106	1	383.5	ď	175	208	Ω.	ۍ ۲	290	93		
	Ċ	2	2	384.1	P. E.	122	262	ŝ	4	189e	195e	5 6	
	IJ	110	က	374	B. D.	112	262	2	1	247	127	10	Bone and
	U	32	4	400.2	P. E.	116	284	e L	2^{1}_{2}	235	165	$4 10\frac{1}{2}$	10½ Bone and
													coal Churn drill
	IJ	44	1	397.2	P. E.	279	118	5	9	N.D.E.	N.D.E.	N.D.E.	Identity of
													coal ques- tionable
	IJ	111	2	395	H. L.	193	202	0	57	300	95	1 4	
	IJ	53	က	436		133	303	υ.	-	249	187	4 9	
	Η	B-6	4	395		120d	275d	•	•	252d	143d	•	
	Η	B-7	ũ	406.1	Р.	89d	317d	•	•	211d	195d	•	
	Η	B-8	1	460.2		117d	343d	•		242d	218d	•	
	IJ	13	2	396	P. E.	145	251	υ.	2	272	124	6 4	
	IJ	49	က	440.8		121	320	4	4	228	223	5 6?	
	U	52	-	471		133	338	ũ	9	242	229	4 6	
	H	B-11	21	440.8	Р.	102d	339d		:	209d	232d	•	
~	C	58	1	510	P. E.	220	290	9		N.D.E.	N.D.E.	N.D.E.	

TABLE 1-Location and level data for borings located on Plate 1-Continued.

H

16

STRUCTURE OF PARTS OF WILLIAMSON AND SALINE COUNTIES

Location	Part of sec.	1/4 1/4	NW NE SE SW	_	WN SW	SE NE	NW NE NW SW						NW NE NE NW
	Sec.		2 2	2	10	က		000	∞ 4	4	4	າວ	0 0

9	تر م			4 11	:		4 4	9 (N.D.E.			6 0	6 6	6 5	4 8	7 3		7 0	1 5	out	6 1
		•							 		م										_
46?	194		167	126	26	87	244	260	N.D.E.	252	281d	255	197	219	203	179	192	205	114	out	96
394	303	· · · ·	320d	349	355d	325d	335	183	N.D.E.	194d	185d	220	284	243	239	268	192	202	262	out	269
Ŋ	0	:	•	ŋ		:	0	4	9			0	2	0	0	0	ıt	9	Ţ	1	∞
r0 -	00	•	:	9		•	9	5	က	•	:	2	9	2	9	9	out	ο.	6	10	ŋ
225	297		282d	250	191d	223d	346	367	228	375d	395d	370	336	342	328	309	out	329	225	313	247
215	200		205d	225	240d	189d	132	76	177	71d	71d	105	145	120	114	· 138	out	78	151	47	118
B. D.		Н. L.	Р. Е.	B.	H. L.	Ч.	Ч.	Ŀ.	B.	Ч.	P. E.	H.	Ч.	Ч.	Η.	Ч.	H.	Р.	H.	B.	Ö.
440	497	465	487.2	475	431.15	411.8	479.8	443	405	446.45	466.45	475	480.9	462	442	447	384	407.2	376.5	360	365
ς.	က	4	ŋ	1	2	က	1	5	ŝ	4	5	9	-	2	1	7	-	5	က	1	5
93	56	55	B-12	11	B-13	B-14	51	62	57	B-10	B-9	•	20	50	19	21	112	34	∞	135	18

Approximate

location

Identity No. 5 coal un-

Churn drill Correlation

certain

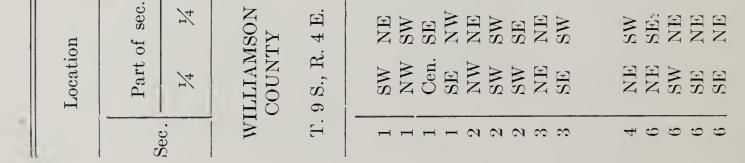
uncertain

Churn drill

Churn drill

Churn drill

Churn drill Churn drill


Oil test

17

	· · · · · · · · · · · · · · · · · · ·	•	20.
B. D.		Р. Б. Б. Г. Б. Г. Б. Б. Б. Г. Б. Г. Б. Б. Б. Б. Г. Б. Г. Б.	cable, page
440		$\begin{array}{c} 480.9\\ 462\\ 442\\ 447\\ 384\\ 384\\ 376.5\\ 360\\ 365\end{array}$	a, b, c, d, e. Explanatory footnotes are given at the end of the table, page
ся [.]	の4 501033103 34500,	- 0 - 0 - 0 0 - 0	en at the
93	$\begin{array}{c} 56 \\ 55 \\ 51 \\ 11 \\ 11 \\ 8-12 \\ 51 \\ 51 \\ 51 \\ 62 \\ 8-10 \\ 8-10 \\ 8-9 \\ 10 \\ 8-9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$\begin{array}{c} 20\\ 50\\ 11\\ 21\\ 34\\ 8\\ 135\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$	tes are giv
IJ		••••••••••••	ry footno
NE	SE Cor. NW NE SE SW SW NW NE	N. line NW NW NE NE NE SW SW	Explanato
SE		SE S	o, c, d, e.]
9	000000 0001110000	9 9 10 11 11 11 11 12 12 12 12	a,

I-Continued.
on Plate
no
ocated
borings l
for
data for
and level
and
1-Location
TABLE

	STRUCTURE	OF PARTS OF V	WILLIAMS	SON	ANI) SA	ALINI	e co	UN	TIES					
	Remarks		Churn drill						Location un-	certain; not	on map				No record
alc	Thickness	Ft. In.	N.D.E.	3 10	N.D.E.	- 61 - 61	N.D.E.	N.D.E.	N.D.E.		•	•	N.D.E.	•	
No. 5 Coal ^c	Altitude of bottom	Feet	N.D.E.	158	N.D.E.	240	N.D.E.	N.D.E. N.D.E.	N.D.E.		184d	173d	N.D.E.	171d	•
	Depth to bottom	Feet	N.D.E.	330	$\left \begin{array}{c} N.D.E. \\ 196 \end{array} \right $	327	N.D.E.	N.D.E.	N.D.E.		346d	317d	N.D E.	•	• • • • • • • • • • • • • • • • • • • •
1	Thickness	Ft. In.		5 7	یہ ت رہ :	4	9 	0 0 0 8	6 5		•		5 6	•	• • •
No. 6 Coal	Altitude of bottom	Feet	259	254	$\frac{174}{360}$, 335	296 975	390	273		271d	250d	244	249d	235d
	Depth to bottom	Feet	199	234	276 101	231	266 975	190	292		259d	240d	265		
	Elev. ^b method		F. E.		.н. Е.Е.	Р					Н. І.	H. L.	Н. І.	•	• • • • • • • • • • • • • • • • • • • •
	Surface altitude	Feet	458	488	450 470	566.9	562	580 580	565		530	490	509	- - - - - - -	- - - - - -
	Map No.		Ц	0	∞ 4	·	0 0	° –	• • • •		بــ	Ť	2	÷	4
pany	No.		60	90	11 88	108	9	01 9	x		2	1	17	57	Shaft
Company	Namea		ß	∞		Ŭ	<u>р</u> р		n.		В	m	Р	n	CM
		Z			L.										

N.D.E.	4 4 6 9	N.D.E.		N.D.E.		• • •	•	•	•	•	•	4 2	•	4 2		•	•	N.D.E.	•		5 8	4 4		4 5	4 6	•
N.D.E.	276	N.D.E.	N.D.E.	N.D.E.		36d	44d	P02	53d	59d	41d	66	117d	63	98d	125d	82d	N.D.E.	97d	106d	82	89	86d	230	160	227d
N.D.E.	205	N.D.E.	N.D.E.	N.D.E.		491	472d	439d	444d	443d	421d	421	372d	442	423d	319d	385d	N.D.E.	429d	420d	438	406	396d	290	320	331d
5 5 4 4	4 10	4 8	5 5	5 1		• • •	•	• • •	• • •			5 6		6 4	•	• • •	• • •	•	•	•	8 4	6 6	•	out ?	7 1	
279 340	361	250	197	229		 125d	134d	161d	149d	156d	137d	166	208d	159	195d	220d	175d	•	188d	193d	180	174	186d	out ?	247	316d
259 158	115	283	248	245		 398	382d	348d	348d	346d	325d	321	281 d	346	326d	224d	292d	•	338d	333d	340	321	309d	out ?	233	242d
Н. L. Н. Г.	H. L.					P. E.	P. E.	P. E.	P. E.			<u> </u>	P. E.	•	P. E.		P. E.	P. E.	P. E.		H. L.			H. L.		
$538 \\ 498$	476	553	445	474		523.2	516.1	508.9	497.4	502	462	486.8	489	505		443.7	466.8	500	526.4	526.3	520	495	495.8	520	480	557.6
	0	1	0	ಣ		1	1	2	Ţ	1	Ţ	Ļ	2	ಣ	1	2	1	5	1	5	1	2	3	1	1	Ţ
16 141	134	94	33	68		16	17	25	18	20	19	103	98	2	24	က	21	A-1	23	5	6	Ţ	22	9	•	-
A 2		G	∞	∞		C	U	U	U	U	U	U	IJ	В	U	Ö	0	CM	U	0	• • • •	В	U	Р	В	U
MN	SE	MN	NE	NE	S B 4 F	 NE	NE	SE	SW	SE	MN	NE	SE	MN	NE	SE	SE	SW	Cor.	SW	SE	SW	NE	SE	MN	NE
SW	SW	MN	MN	SE	a S S	SW	NW	SW	NE	SW	SE	NE	SE	MS	SE	SE	MN	SE	SE	MN	NE	SE	MS	NW	SE	NIN
s 5	, c.	12	12	12	E	20	21	21	22	23	24	25	25	25	26	26	27	27	28	28	29	29	29	30	31	32

NW NW NE NE	. 4 E	NE	SE	SW	SE	NNN N	NE	NN	NE	SE	SE	SW	Cor	SW	SE	MS	NE	SE	MN	NE	Expla
NE SW NW SE	8 S., R	NW NW	SW	NE	MS	SE	NE	SW	SE	SE	MN	SE	SE	MN	NE	SE	MS	MN	SE	NIN). c. d. e.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Τ.	20	21	22	53 73	24	25	250	26	26	27	27	28	28	29	29	29	30	31	32	3.

6
5
11
3
11
CT CT
$\dot{\mathbf{Q}}$
te
lat
<u> </u>
on j
u
0
~
tec
at
- S
õ
~
5
6
2
. 2
6
2
01
<u> </u>
~
ta
dat
q
~
6
6
le
and l
P
nud
a
2
0
12
a
S
.9
1
1-3
ABLE
BI
H
£ .

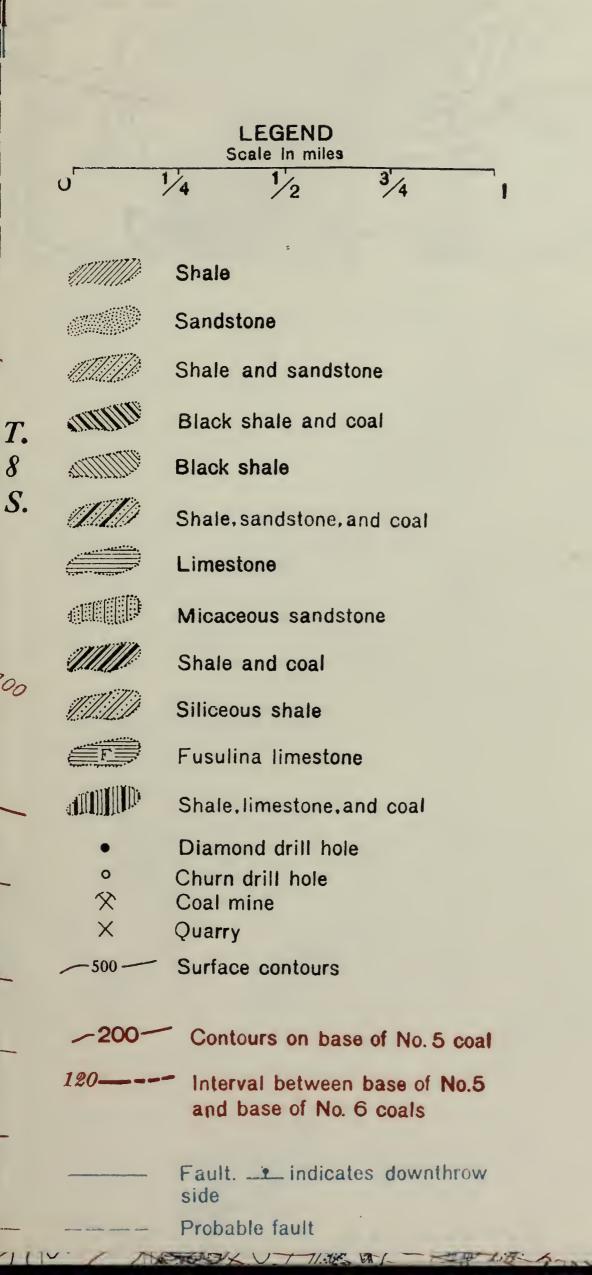
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Company				No. 6 Coal	al		No. 5 Coal ^e	al ^c	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ma				Altitude of bottom	Thickness	Depth to bottom	Altitude of bottom		Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fe	et	Feet	Freet	Ft. In.	Feet	Feet	Ft. In.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3-B	0 <u>.</u>	Ч.	• • • • •	•		N.D.E.	N.D.E.	N.D.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			م م					AL D. E		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 		- 1	286	205		382	116?	8 2?	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Ч.	274	270	3	371	173		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Ъ.	260.4		<u>م</u> .	355	192		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>x</u> 4	46	Р.	294		<u>^</u> .	393	97	3 2.2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	107 1	22	Ŀ.	279d	247d		367d	159d		
3 531.1 $P. E.$ 139 392 5 0 235 296 1 443 $H. L.$ 215 228 6 6 $N.D.E.$ $N.D.E.$			Ъ.	304	220	6 6	395	127	4 5	
1 443 H. L. 215 228 6 6 N.D.E. N.D.E.	109		Р.	139	392	5 0	235	296	4 4	
		4		215	228	9 9	N.D.E.	N.D.E.	N.D.E.	

liselosing confidential data relative to the coals, which could be obtained by comparison with data previously published by the Illinois Geological levation of and depth to the top instead of the bottom of Nos. 5 and 6 coals are given.

Ilness of the interval between Nos. 5 and 6 coals reported in the record of this hole, some doubt attaches to the accuracy of the record.

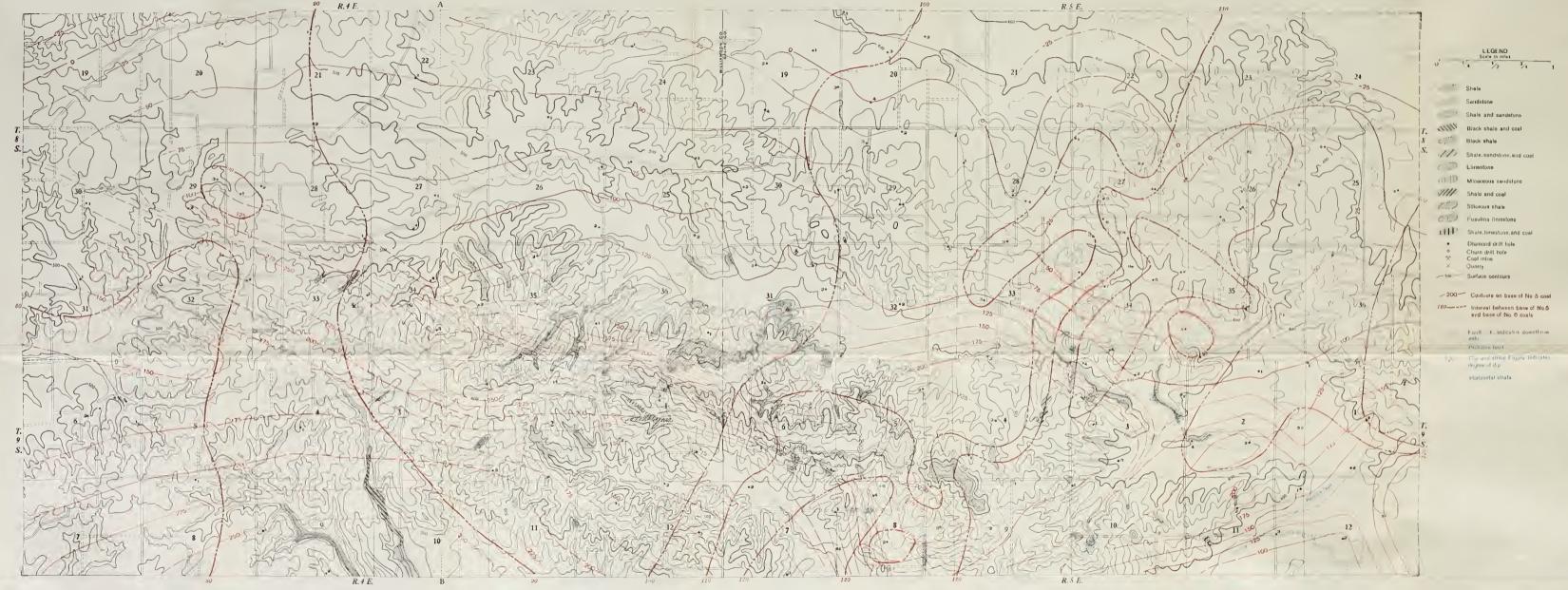
20

d.

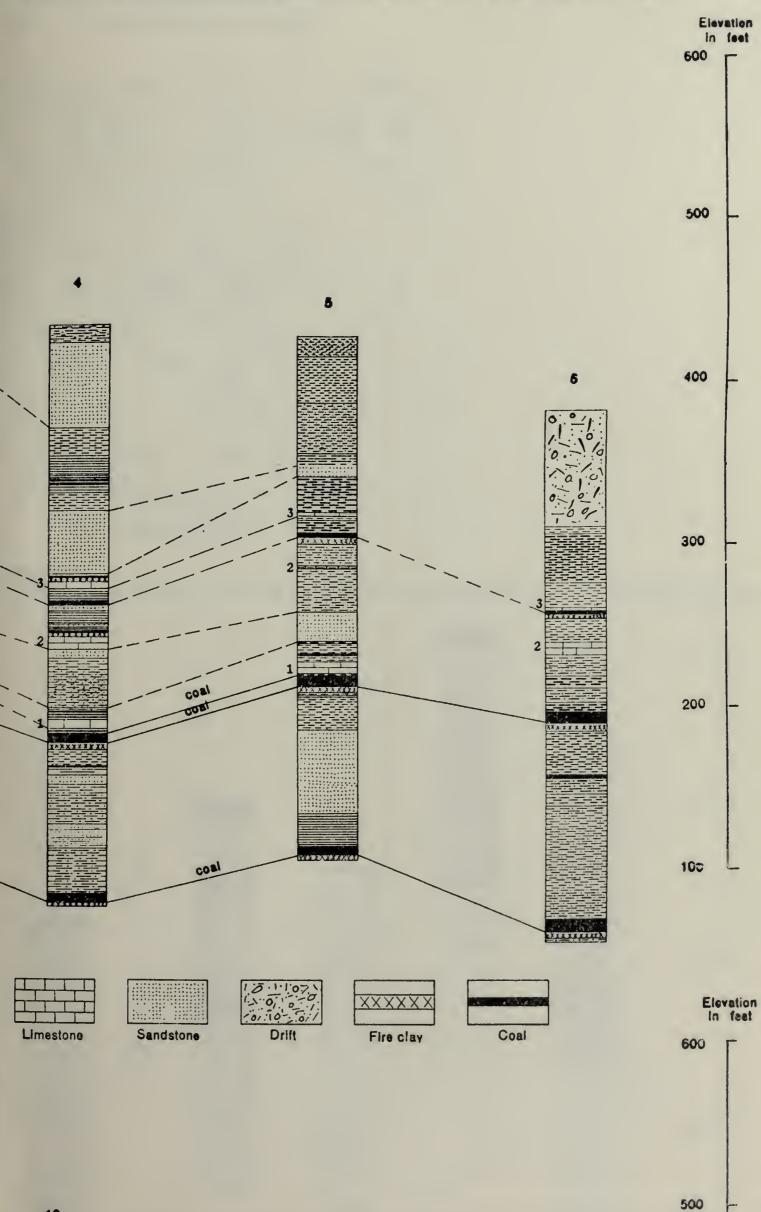

8

STRUCTURE OF PARTS OF WILLIAMSON AND SALINE COUNTIES

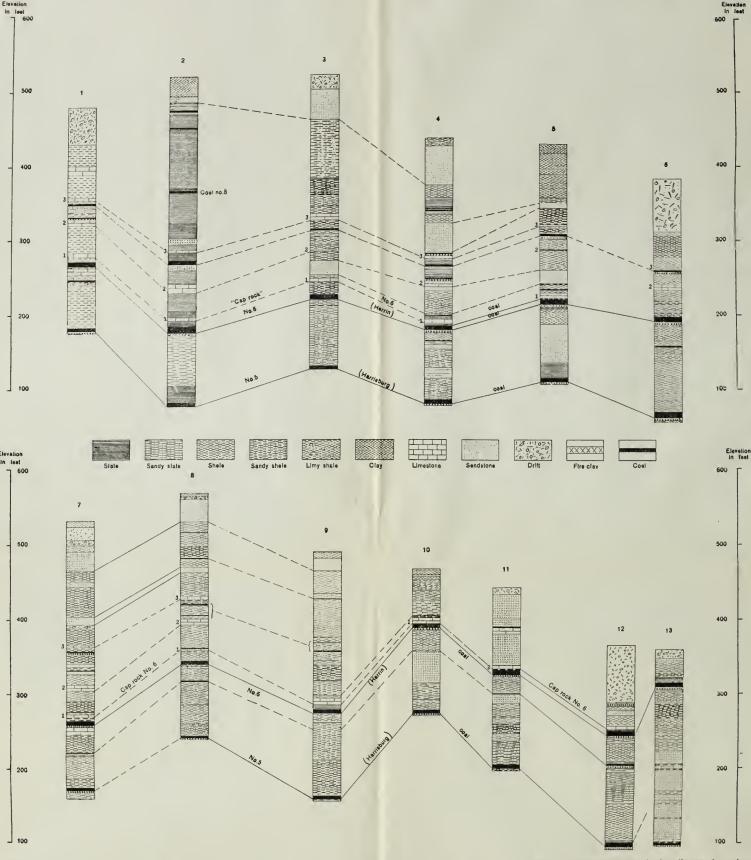
	Sun alti					7.		~	4.	~~~	~~~	****	7		cers		clative to to the top inst	Nos.	
	Map No.		2	1	2	1	2	∞ ·	4		0	~	Ţ	i i	ap. nap. cul engin	coal.		oetween]	
Company	ŀ	No.	3-B	2-B	5-B	160	157	156	158	107	165	109	45	orporatio	n graphie m graphie n ned by lo	ach the e		the interval between Nos.	
Com		Namea	CM	CM	CM	U	U	50	IJ.	IJ	U	U	J	us. any. ompany. Collierics.	rmination oun topog runination rom topo i determin	ugh to re	ssing cont tion of an	ss of the	
on	of sec.	1/4	NE	NE	SE	NE	SE	SE	NE	SE	MN	SW	SE	A. R. Byrd and Sons. Corinth Coal Company. —Cosgrove Mechan Coal Corporation. Guarantee Trust Company. Harrisburg Saline Collierics.	Barometric determination Field estimate from topographic map. Hand level determination. Office estimate from topographic map. Precise elevation determined by local engineers	-Not deep enough to reach the	In order to avoid disclosing confidential data re- Survey, the elevation of and depth to the	e Because of the smallness of	
Location	Part of	1/4	SE	SE	NE	NE	NE		N S	E	NE	SE	NE	A. R. Byrd Corinth Co Cosgrove Guarant ce Harrisburg		N.D.ENot	order to a Survey,	ause of tl	
		. 996	32	33	33	34	34	34	34	35	35	35	36		b B.D. F.E. H.L. P.E.	G N.D	d In e	e Bec	

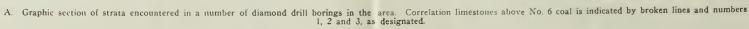

REPORT OF INVESTIGATIONS NO. 2, PLATE I.

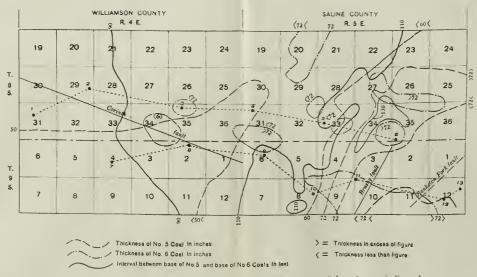
=====


<UL1-

11 17:17:1. 1. 1. Tran

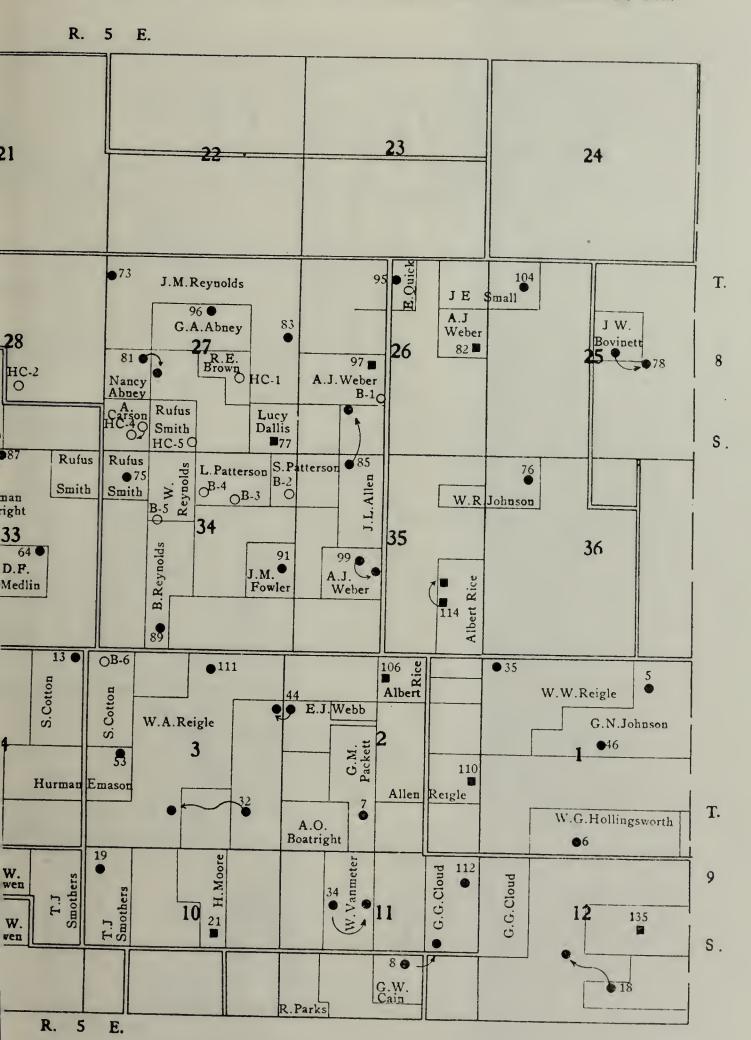


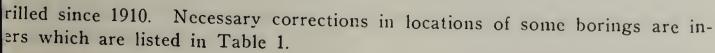

REPORT OF INVESTIGATIONS NO. 2, PLATE NO. II.



ILLINOIS STATE GEOLOGICAL SURVEY.

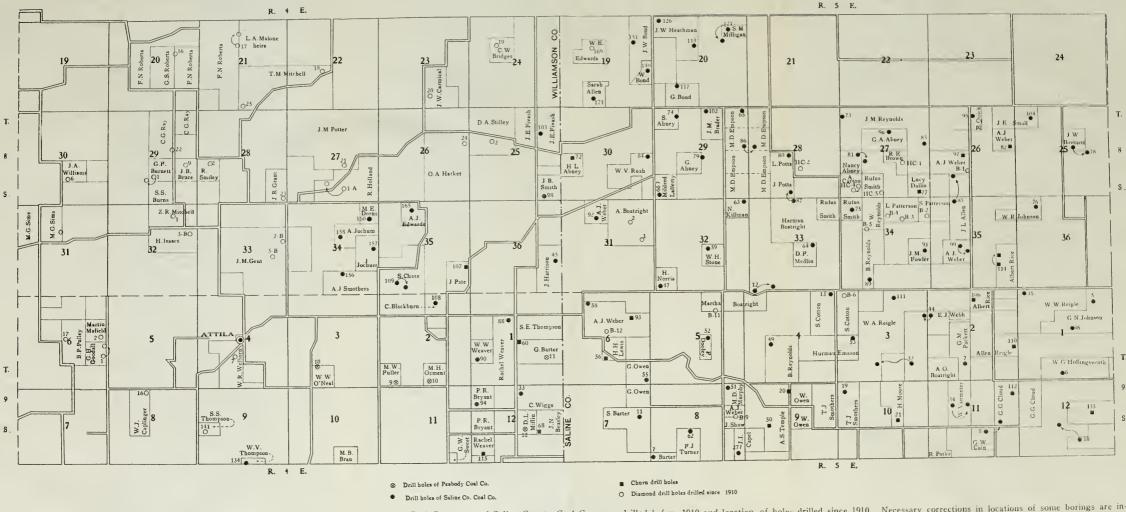
REPORT OF INVESTIGATIONS NO. 2, PLATE NO. II.



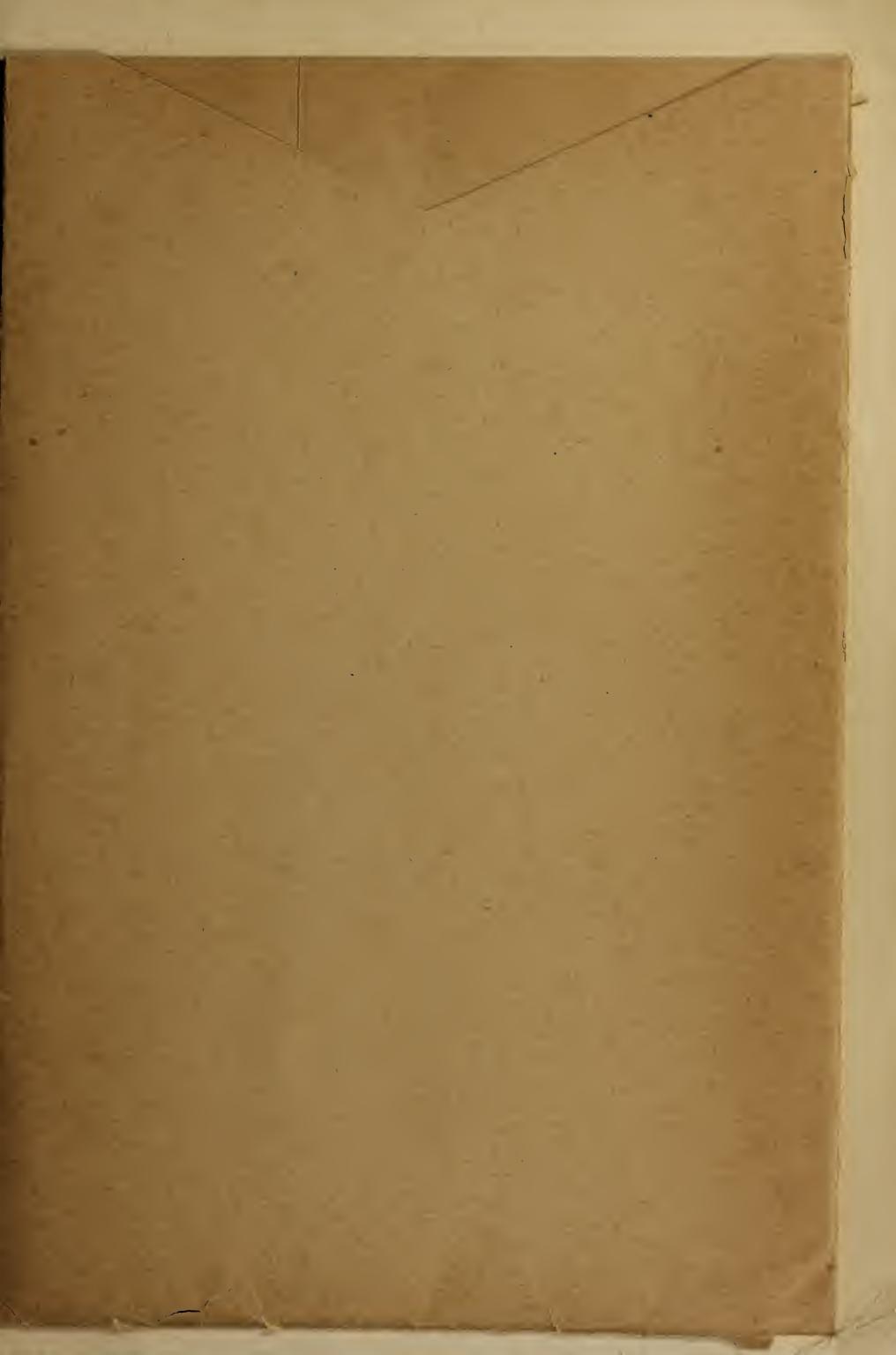


B Index map upon which the thicknesses of and intervals between Nos. 5 and 6 coals are indicated.

1557.73 Gr-2

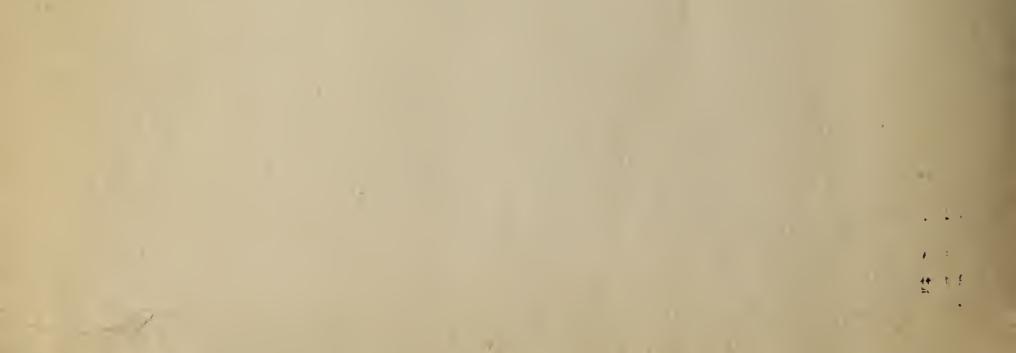


I557.73 Gr-2 C . 3


ILLINOIS STATE GEOLOGICAL SURVEY.

REPORT OF INVESTIGATIONS NO. 2. PLATE NO. III.

Gr-2 C·3



Copy of field map of Guarantee Trust Company showing location of borings of Peabody Coal Company and Saline County Coal Company drilled before 1910 and location of holes drilled since 1910. Necessary corrections in locations of some borings are indicated by arrows pointing to the symbols representing revised locations. The numbers accompanying the symbols refer to company numbers which are listed in Table 1. 75773

+ 6

